torchfold

Tools for PyTorch

Showing:

Popularity

Downloads/wk

0

GitHub Stars

221

Maintenance

Last Commit

3yrs ago

Contributors

4

Package

Dependencies

0

License

Apache License, Version 2.0

Categories

Readme

PyPi version DOI

TorchFold

Blog post: http://near.ai/articles/2017-09-06-PyTorch-Dynamic-Batching/

Analogous to TensorFlow Fold, implements dynamic batching with super simple interface. Replace every direct call in your computation to nn module with f.add('function name', arguments). It will construct an optimized version of computation and on f.apply will dynamically batch and execute the computation on given nn module.

Installation

We recommend using pip package manager:

pip install torchfold

Example

    f = torchfold.Fold()
   
    def dfs(node):
        if is_leaf(node):
            return f.add('leaf', node)
        else:
            prev = f.add('init')
            for child in children(node):
                prev = f.add('child', prev, child)
            return prev

    class Model(nn.Module):
        def __init__(self, ...):
            ...

        def leaf(self, leaf):
            ...

        def child(self, prev, child):
            ...

    res = dfs(my_tree)
    model = Model(...)
    f.apply(model, [[res]])

To cite this repository in publications:

@misc{illia_polosukhin_2018_1299387,
  author       = {Illia Polosukhin and
                  Maksym Zavershynskyi},
  title        = {nearai/torchfold: v0.1.0},
  month        = jun,
  year         = 2018,
  doi          = {10.5281/zenodo.1299387},
  url          = {https://doi.org/10.5281/zenodo.1299387}
}

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100