=========
.. image:: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac/badge.svg :target: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac
.. image:: https://travis-ci.org/EtienneCmb/tensorpac.svg?branch=master :target: https://travis-ci.org/EtienneCmb/tensorpac
.. image:: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master.svg?style=svg :target: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master
.. image:: https://ci.appveyor.com/api/projects/status/0arxtw05583gc3e2/branch/master?svg=true :target: https://ci.appveyor.com/project/EtienneCmb/tensorpac/branch/master
.. image:: https://codecov.io/gh/EtienneCmb/tensorpac/branch/master/graph/badge.svg :target: https://codecov.io/gh/EtienneCmb/tensorpac
.. image:: https://badge.fury.io/py/tensorpac.svg :target: https://badge.fury.io/py/tensorpac
.. image:: https://pepy.tech/badge/tensorpac :target: https://pepy.tech/project/tensorpac
.. image:: https://badges.gitter.im/EtienneCmb/tensorpac.svg :target: https://gitter.im/EtienneCmb/tensorpac?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
.. figure:: https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/tp.png :align: center
Tensorpac is an Python open-source toolbox for computing Phase-Amplitude Coupling (PAC) using tensors and parallel computing for an efficient, and highly flexible modular implementation of PAC metrics both known and novel. Check out our documentation <http://etiennecmb.github.io/tensorpac/>
_ for details.
Tensorpac uses NumPy, SciPy and joblib for parallel computing. To get started, just open your terminal and run :
.. code-block:: console
$ pip install tensorpac
.. code-block:: python
from tensorpac import Pac from tensorpac.signals import pac_signals_tort
n_epochs = 20 # number of trials n_times = 4000 # number of time points sf = 512. # sampling frequency
data, time = pac_signals_tort(f_pha=10, f_amp=100, noise=2, n_epochs=n_epochs, dpha=10, damp=10, sf=sf, n_times=n_times)
p = Pac(idpac=(6, 0, 0), f_pha='hres', f_amp='hres')
xpac = p.filterfit(sf, data)
p.comodulogram(xpac.mean(-1), cmap='Spectral_r', plotas='contour', ncontours=5, title=r'10hz phase$\Leftrightarrow$100Hz amplitude coupling', fz_title=14, fz_labels=13)
p.show()
.. figure:: https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/readme.png :align: center
Version | Tag | Published |
---|---|---|
0.6.5 | 2yrs ago | |
0.6.4 | 3yrs ago | |
0.6.3 | 3yrs ago | |
0.6.2 | 3yrs ago |