ten
tensorpac
pypi i tensorpac
ten

tensorpac

Phase-Amplitude Coupling under Python

by Etienne Combrisson

0.6.5 (see all)License:BSD 3-Clause License
pypi i tensorpac
Readme

=========

Tensorpac

.. image:: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac/badge.svg :target: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac

.. image:: https://travis-ci.org/EtienneCmb/tensorpac.svg?branch=master :target: https://travis-ci.org/EtienneCmb/tensorpac

.. image:: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master.svg?style=svg :target: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master

.. image:: https://ci.appveyor.com/api/projects/status/0arxtw05583gc3e2/branch/master?svg=true :target: https://ci.appveyor.com/project/EtienneCmb/tensorpac/branch/master

.. image:: https://codecov.io/gh/EtienneCmb/tensorpac/branch/master/graph/badge.svg :target: https://codecov.io/gh/EtienneCmb/tensorpac

.. image:: https://badge.fury.io/py/tensorpac.svg :target: https://badge.fury.io/py/tensorpac

.. image:: https://pepy.tech/badge/tensorpac :target: https://pepy.tech/project/tensorpac

.. image:: https://badges.gitter.im/EtienneCmb/tensorpac.svg :target: https://gitter.im/EtienneCmb/tensorpac?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge

.. figure:: https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/tp.png :align: center

Description

Tensorpac is an Python open-source toolbox for computing Phase-Amplitude Coupling (PAC) using tensors and parallel computing for an efficient, and highly flexible modular implementation of PAC metrics both known and novel. Check out our documentation <http://etiennecmb.github.io/tensorpac/>_ for details.

Installation

Tensorpac uses NumPy, SciPy and joblib for parallel computing. To get started, just open your terminal and run :

.. code-block:: console

$ pip install tensorpac

Code snippet & illustration

.. code-block:: python

from tensorpac import Pac from tensorpac.signals import pac_signals_tort

Dataset of signals artificially coupled between 10hz and 100hz :

n_epochs = 20 # number of trials n_times = 4000 # number of time points sf = 512. # sampling frequency

Create artificially coupled signals using Tort method :

data, time = pac_signals_tort(f_pha=10, f_amp=100, noise=2, n_epochs=n_epochs, dpha=10, damp=10, sf=sf, n_times=n_times)

Define a Pac object

p = Pac(idpac=(6, 0, 0), f_pha='hres', f_amp='hres')

Filter the data and extract pac

xpac = p.filterfit(sf, data)

plot your Phase-Amplitude Coupling :

p.comodulogram(xpac.mean(-1), cmap='Spectral_r', plotas='contour', ncontours=5, title=r'10hz phase$\Leftrightarrow$100Hz amplitude coupling', fz_title=14, fz_labels=13)

p.show()

.. figure:: https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/readme.png :align: center

VersionTagPublished
0.6.5
2yrs ago
0.6.4
3yrs ago
0.6.3
3yrs ago
0.6.2
3yrs ago
No alternatives found
No tutorials found
Add a tutorial
No dependencies found

Rate & Review

100
No reviews found
Be the first to rate