snntoolbox

Toolbox for converting analog to spiking neural networks (ANN to SNN), and running them in a spiking neuron simulator.

Showing:

Popularity

Downloads/wk

0

GitHub Stars

215

Maintenance

Last Commit

3mos ago

Contributors

15

Package

Dependencies

1

License

MIT

Categories

Readme

|b1| |b2| |b3| |b4|

.. |b1| image:: https://travis-ci.org/NeuromorphicProcessorProject/snn_toolbox.svg?branch=master :target: https://travis-ci.org/NeuromorphicProcessorProject/snn_toolbox

.. |b2| image:: https://readthedocs.org/projects/snntoolbox/badge/?version=latest :target: https://snntoolbox.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

.. |b3| image:: https://badge.fury.io/py/snntoolbox.svg :target: https://badge.fury.io/py/snntoolbox

.. |b4| image:: https://pepy.tech/badge/snntoolbox :target: https://pepy.tech/project/snntoolbox

Spiking neural network conversion toolbox

The SNN conversion toolbox (SNN-TB) is a framework to transform rate-based artificial neural networks into spiking neural networks, and to run them using various spike encodings. A unique feature about SNN-TB is that it accepts input models from many different deep-learning libraries (Keras / TF, pytorch, ...) and provides an interface to several backends for simulation (pyNN, brian2, ...) or deployment (SpiNNaker, Loihi).

Please refer to the Documentation <http://snntoolbox.readthedocs.io> for a complete user guide and API reference. See also the accompanying articles [Rueckauer et al., 2017] <https://www.frontiersin.org/articles/10.3389/fnins.2017.00682/abstract> and [Rueckauer and Liu, 2018] <https://ieeexplore.ieee.org/abstract/document/8351295/>_.

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100
No reviews found
Be the first to rate

Alternatives

No alternatives found

Tutorials

No tutorials found
Add a tutorial