prediction-flow is a Python package providing modern Deep-Learning based CTR models. Models are implemented by PyTorch.
pip install prediction-flow
There are two parameters for all feature types, name and column_flow. The name parameter is used to index the column raw data from input data frame. The column_flow parameter is a single transformer of a list of transformers. The transformer is used to pre-process the column data before training the model.
Number('age', StandardScaler())
Number('ctr', None)
Category('movieId', CategoryEncoder(min_cnt=1))
Sequence('genres', SequenceEncoder(sep='|', min_cnt=1))
The following transformers are provided now.
transformer | supported feature type | detail |
---|---|---|
StandardScaler | Number | Wrapper of scikit-learn's StandardScaler. Null value must be filled in advance. |
LogTransformer | Number | Log scaler. Null value must be filled in advance. |
CategoryEncoder | Category | Converting str value to int. Null value must be filled in advance using '__UNKNOWN__'. |
SequenceEncoder | Sequence | Converting sequence str value to int. Null value must be filled in advance using '__UNKNOWN__'. |
model | reference |
---|---|
DNN | - |
Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
DIN | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
DNN + GRU + GRU + Attention | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
DNN + GRU + AIGRU | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
DNN + GRU + AGRU | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
DNN + GRU + AUGRU | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
DIEN | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
OTHER | TODO |
This dataset is just used to test the code can run, accuracy does not make sense.
accuracy
Version | Tag | Published |
---|---|---|
0.1.5 | 1yr ago | |
0.1.4 | 2yrs ago | |
0.1.3 | 3yrs ago | |
0.1.2 | 3yrs ago |