pl

pandas-log

The goal of pandas-log is to provide feedback about basic pandas operations. It provides simple wrapper functions for the most common functions that add additional logs

Showing:

Popularity

Downloads/wk

0

GitHub Stars

181

Maintenance

Last Commit

9mos ago

Contributors

6

Package

Dependencies

3

License

MIT license

Categories

Readme

==========

pandas-log

.. image:: https://img.shields.io/pypi/v/pandas_log.svg :target: https://pypi.python.org/pypi/pandas_log

.. image:: https://img.shields.io/travis/eyaltrabelsi/pandas-log.svg :target: https://travis-ci.org/eyaltrabelsi/pandas-log

.. image:: https://readthedocs.org/projects/pandas-log/badge/?version=latest :target: https://pandas-log.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

.. image:: https://pyup.io/repos/github/eyaltrabelsi/pandas-log/shield.svg :target: https://pyup.io/repos/github/eyaltrabelsi/pandas-log/ :alt: Updates

The goal of pandas-log is to provide feedback about basic pandas operations. It provides simple wrapper functions for the most common functions, such as .query, .apply, .merge, .group_by and more.

Why pandas-log?

Pandas-log is a Python implementation of the R package tidylog, and provides a feedback about basic pandas operations.

The pandas has been invaluable for the data science ecosystem and usually consists of a series of steps that involve transforming raw data into an understandable/usable format. These series of steps need to be run in a certain sequence and if the result is unexpected it's hard to understand what happened. Pandas-log log metadata on each operation which will allow to pinpoint the issues.

Lets look at an example, first we need to load pandas-log after pandas and create a dataframe:

.. code-block:: python

import pandas
import pandas_log

with pandas_log.enable():
    df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
                   "toy": [np.nan, 'Batmobile', 'Bullwhip'],
                   "born": [pd.NaT, pd.Timestamp("1940-04-25"), pd.NaT]})

pandas-log will give you feedback, for instance when filtering a data frame or adding a new variable:

.. code-block:: python

df.assign(toy=lambda x: x.toy.map(str.lower))
  .query("name != 'Batman'")

pandas-log can be especially helpful in longer pipes:

.. code-block:: python

df.assign(toy=lambda x: x.toy.map(str.lower))
  .query("name != 'Batman'")
  .dropna()\
  .assign(lower_name=lambda x: x.name.map(str.lower))
  .reset_index()

For medium article go here <https://towardsdatascience.com/introducing-pandas-log-3240a5e57e21>_

For a full walkthrough go here <https://github.com/eyaltrabelsi/pandas-log/blob/master/examples/pandas_log_intro.ipynb>_

Installation

pandas-log is currently installable from PyPI:

.. code-block:: bash

pip install pandas-log

Contributing

Follow contribution docs <https://pandas-log.readthedocs.io/en/latest/contributing.html>_ for a full description of the process of contributing to pandas-log.

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100