nl

nested-lookup

Python functions for working with deeply nested documents (lists and dicts)

Showing:

Popularity

Downloads/wk

0

GitHub Stars

187

Maintenance

Last Commit

6mos ago

Contributors

17

Package

Dependencies

0

License

Public Domain

Categories

Readme

nested_lookup #############

.. image:: https://img.shields.io/badge/pypi-0.2.22-green.svg :target: https://pypi.python.org/pypi/nested-lookup .. image:: https://travis-ci.org/rameshrvr/nested-lookup.svg?branch=master :target: https://travis-ci.org/rameshrvr/nested-lookup

Make working with JSON, YAML, and XML document responses fun again!

The nested_lookup package provides many Python functions for working with deeply nested documents. A document in this case is a a mixture of Python dictionary and list objects typically derived from YAML or JSON.

nested_lookup: Perform a key lookup on a deeply nested document. Returns a list of matching values.

nested_update: Given a document, find all occurences of the given key and update the value. By default, returns a copy of the document. To mutate the original specify the in_place=True argument.

nested_delete: Given a document, find all occurrences of the given key and delete it. By default, returns a copy of the document. To mutate the original specify the in_place=True argument.

nested_alter: Given a document, find all occurrences of the given key and alter it with a callback function. By default, returns a copy of the document. To mutate the original specify the in_place=True argument.

get_all_keys: Fetch all keys from a deeply nested dictionary. Returns a list of keys.

get_occurrence_of_key/get_occurrence_of_value: Returns the number of occurrences of a key/value from a nested dictionary.

For examples on how to invoke these functions, please check out the tutorial sections.

.. contents::

install

install from pypi using pip::

pip install nested-lookup

or easy_install::

easy_install nested-lookup

or install from source using::

git clone https://github.com/russellballestrini/nested-lookup.git cd nested-lookup pip install .

quick tutorial

This tutorial uses the Python Interactive shell, please follow along : )

Before we start, let's define an example document to work on.

.. code-block:: python

document = [ { 'taco' : 42 } , { 'salsa' : [ { 'burrito' : { 'taco' : 69 } } ] } ]

First, we lookup a key from all layers of a document using nested_lookup:

.. code-block:: python

from nested_lookup import nested_lookup print(nested_lookup('taco', document)) [42, 69]

As you can see the function returned a list of two integers, these integers are the values from the matched key lookups.

Next, we update a key and value from all layers of a document using nested_update:

.. code-block:: python

from nested_lookup import nested_update nested_update(document, key='burrito', value='test') [{'taco': 42}, {'salsa': [{'burrito': 'test'}]}]

Here you see that the key burrito had it's value changed to the string 'test', like we asked.

Finally, we try out a delete operation using nested_delete:

.. code-block:: python

from nested_lookup import nested_delete nested_delete(document, 'taco') [{}, {'salsa': [{'burrito': {}}]}]

Perfect, the returned document looks just like we expected!

longer tutorial

You may control the function's behavior by passing some optional arguments.

wild (defaults to False): if wild is True, treat the given key as a case insensitive substring when performing lookups.

with_keys (defaults to False): if with_keys is True, return a dictionary of all matched keys and a list of values.

For example, given the following document:

.. code-block:: python

from nested_lookup import nested_lookup

my_document = { "name" : "Rocko Ballestrini", "email_address" : "test1@example.com", "other" : { "secondary_email" : "test2@example.com", "EMAIL_RECOVERY" : "test3@example.com", "email_address" : "test4@example.com", }, },

Next, we could act wild and find all the email addresses like this:

.. code-block:: python

results = nested_lookup( key = "mail", document = my_document, wild = True )

print(results)

.. code-block:: python

["test1@example.com", "test4@example.com", "test2@example.com", "test3@example.com"]

Additionally, if you also needed the matched key names, you could do this:

.. code-block:: python

results = nested_lookup( key = "mail", document = my_document, wild = True, with_keys = True, )

print(results)

.. code-block:: python

{ "email_address": ["test1@example.com", "test4@example.com"], "secondary_email": ["test2@example.com"], "EMAIL_RECOVERY": ["test3@example.com"] }

We do not mutate input, if we do you found a defect. Please open an issue.

Let's delete and update our deeply nested key / values and see the results:

.. code-block:: python

from nested_lookup import nested_update, nested_delete

result => {'other': {'secondary_email': 'test2@example.com', 'email_address': 'test4@example.com'}, 'email_address': 'test1@example.com', 'name': 'Rocko Ballestrini'}

result = nested_delete(my_document, 'EMAIL_RECOVERY') print(result)

result => {'other': 'Test', 'email_address': 'test1@example.com', 'name': 'Rocko Ballestrini'}

result = nested_update(my_document, key='other', value='Test') print(result)

Now let's say we wanted to get a list of every nested key in a document, we could run this:

.. code-block:: python

from nested_lookup import get_all_keys

keys = get_all_keys(my_document) print(keys)

.. code-block:: python

['name', 'email_address', 'other', 'secondary_email', 'EMAIL_RECOVERY', 'email_address']

Also, to get the number of times a key or value occurs in the document, try:

.. code-block:: python

from nested_lookup import ( get_occurrence_of_key, get_occurrence_of_value, )

result => 2

key_occurrence_count = get_occurrence_of_key(my_document, key='email_address') print(no_of_key_occurrence)

result => 1

value_occurrence_count = get_occurrence_of_value(my_document, value='test2@example.com') print(no_of_value_occurrence)

To get the number of occurrence and their respective values

.. code-block:: python

from nested_lookup import get_occurrences_and_values

my_documents = [ { "processor_name": "4", "processor_speed": "2.7 GHz", "core_details": { "total_numberof_cores": "4", "l2_cache(per_core)": "256 KB", } } ]

result = get_occurrences_and_values(my_documents, value='4')

print(result)

{ "4": { "occurrences": 2, "values": [ { "processor_name": "4", "processor_speed": "2.7 GHz", "core_details": { "total_numberof_cores": "4", "l2_cache(per_core)": "256 KB" } }, { "total_numberof_cores": "4", "l2_cache(per_core)": "256 KB" } ] } }

nested_alter tutorial

Nested Alter: write a callback function which processes a scalar value. Be aware about the possible types which can be passed to the callback functions. In this example we can be sure that only int will be passed, in production you should check the type because it could be anything.

Before we start, let's define an example document to work on.

.. code-block:: python

document = [ { 'taco' : 42 } , { 'salsa' : [ { 'burrito' : { 'taco' : 69 } } ] } ]

.. code-block:: python

def callback(data): return data + 10 # add 10 to every taco prize

The alter-version only works for scalar input (one dict), if you need to adress a list of dicts, you have to manually iterate over those and pass them to nested_update one by one

.. code-block:: python

out =[] for elem in document: altered_document = nested_alter(elem,"taco", callback) out.append(altered_document)

print(out) [ { 'taco' : 52 } , { 'salsa' : [ { 'burrito' : { 'taco' : 79 } } ] } ]

from nested_lookup import get_all_keys

get_all_keys(document) ['taco', 'salsa', 'burrito', 'taco']

from nested_lookup import get_occurrence_of_key, get_occurrence_of_value

get_occurrence_of_key(document, key='taco') 2

get_occurrence_of_value(document, value='42') 1

misc

:license:

  • Public Domain

:authors:

  • Russell Ballestrini
  • Douglas Miranda
  • Ramesh RV
  • Salfiii (Florian S.)
  • Matheus Lins

:web:

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100