log-anomaly-detector

Log Anomaly Detection - Machine learning to detect abnormal events logs

Showing:

Popularity

Downloads/wk

0

GitHub Stars

204

Maintenance

Last Commit

2yrs ago

Contributors

27

Package

Dependencies

22

License

Categories

Readme

====================

Log Anomaly Detector

.. image:: https://api.travis-ci.org/aicoe/log-anomaly-detector.png?branch=master :target: http://travis-ci.org/aicoe/log-anomaly-detector .. image:: https://img.shields.io/pypi/v/log-anomaly-detector.svg :target: https://pypi.python.org/pypi/log-anomaly-detector/ .. image:: https://img.shields.io/pypi/dm/log-anomaly-detector.svg :target: https://pypi.python.org/pypi/log-anomaly-detector/ .. image:: https://img.shields.io/pypi/wheel/log-anomaly-detector.svg :target: https://pypi.python.org/pypi/log-anomaly-detector/ :alt: Wheel Status .. image:: https://readthedocs.org/projects/log-anomaly-detector/badge/?version=latest :target: https://log-anomaly-detector.readthedocs.io/en/latest/

Log anomaly detector is an open source project code named "Project Scorpio". LAD is also used for short. It can connect to streaming sources and produce predictions of abnormal log lines. Internally it uses unsupervised machine learning. We incorporate a number of machine learning models to achieve this result. In addition it includes a human in the loop feedback system.

.. image:: imgs/full-app.gif

Project background

The original goal for this project was to develop an automated means of notifying users when problems occur with their applications based on the information contained in their application logs. Unfortunately logs are full of messages that contain warnings or even errors that are safe to ignore, so simple “find-keyword” methods are insufficient . In addition, the number of logs are increasing constantly and no human will, or can, monitor them all. In short, our original aim was to employ natural language processing tools for text encoding and machine learning methods for automated anomaly detection, in an effort to construct a tool that could help developers perform root cause analysis more quickly on failing applications by highlighting the logs most likely to provide insight into the problem or to generate an alert if an application starts to produce a high frequency of anomalous logs.

Components

It currently contains the following components:

.. image:: imgs/components.png

  1. LAD-Core: Contains custom code to train model and predict if a log line is an anomaly. We are currently use W2V (word 2 vec) and SOM (self organizing map) with unsupervised machine learning. We are planning to add more models.
  2. Metrics: To monitor this system in production we utilize grafana and prometheus to visualize the health of this machine learning system.
  3. Fact-Store: In addition we have a metadata registry for tracking feedback from false_positives in the machine learning system and to providing a method for ML to self correcting false predictions called the “fact-store”.

INSTALLING THE PKG

Using pip::

$ pip install log-anomaly-detector

...Or simply add it to your requirements.

.. note::

LAD requires python 3.6

Documentation

Official documentation for LAD can be found at https://log-anomaly-detector.readthedocs.io/en/latest

Community

For help or questions about Log Anomaly Detector usage (e.g. "how do I do X?") then you can open an issue and mark it as question. One of our engineers would be glad to answer.

To report a bug, file a documentation issue, or submit a feature request, please open a GitHub issue.

For release announcements and other discussions, please subscribe to our mailing list (https://groups.google.com/forum/#!members/aiops)

Major updates will be presented at our AiOps special interest group meeting which is a part of openshift commons

OpenShift Commons AiOps Sig Calendar: https://bit.ly/2lMn6yU

Contributing

We happily welcome contributions to LAD. Please see our contribution guide for details.

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100
No reviews found
Be the first to rate

Alternatives

No alternatives found

Tutorials

No tutorials found
Add a tutorial