laz

lazypredict

Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning

Showing:

Popularity

Downloads/wk

0

GitHub Stars

454

Maintenance

Last Commit

6mos ago

Contributors

14

Package

Dependencies

12

License

MIT license

Categories

Readme

============

Lazy Predict

.. image:: https://img.shields.io/pypi/v/lazypredict.svg :target: https://pypi.python.org/pypi/lazypredict

.. image:: https://img.shields.io/travis/shankarpandala/lazypredict.svg :target: https://travis-ci.org/shankarpandala/lazypredict

.. image:: https://readthedocs.org/projects/lazypredict/badge/?version=latest :target: https://lazypredict.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

.. image:: https://pepy.tech/badge/lazypredict :target: https://pepy.tech/project/lazypredict :alt: Downloads

.. image:: https://www.codefactor.io/repository/github/shankarpandala/lazypredict/badge :target: https://www.codefactor.io/repository/github/shankarpandala/lazypredict :alt: CodeFactor

Lazy Predict helps build a lot of basic models without much code and helps understand which models works better without any parameter tuning.

============

Installation

To install Lazy Predict::

pip install lazypredict

=====

Usage

To use Lazy Predict in a project::

import lazypredict

==============

Classification

Example ::

from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

data = load_breast_cancer()
X = data.data
y= data.target

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =123)

clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
models,predictions = clf.fit(X_train, X_test, y_train, y_test)

print(models)


| Model                          |   Accuracy |   Balanced Accuracy |   ROC AUC |   F1 Score |   Time Taken |
|:-------------------------------|-----------:|--------------------:|----------:|-----------:|-------------:|
| LinearSVC                      |   0.989474 |            0.987544 |  0.987544 |   0.989462 |    0.0150008 |
| SGDClassifier                  |   0.989474 |            0.987544 |  0.987544 |   0.989462 |    0.0109992 |
| MLPClassifier                  |   0.985965 |            0.986904 |  0.986904 |   0.985994 |    0.426     |
| Perceptron                     |   0.985965 |            0.984797 |  0.984797 |   0.985965 |    0.0120046 |
| LogisticRegression             |   0.985965 |            0.98269  |  0.98269  |   0.985934 |    0.0200036 |
| LogisticRegressionCV           |   0.985965 |            0.98269  |  0.98269  |   0.985934 |    0.262997  |
| SVC                            |   0.982456 |            0.979942 |  0.979942 |   0.982437 |    0.0140011 |
| CalibratedClassifierCV         |   0.982456 |            0.975728 |  0.975728 |   0.982357 |    0.0350015 |
| PassiveAggressiveClassifier    |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0130005 |
| LabelPropagation               |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0429988 |
| LabelSpreading                 |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0310006 |
| RandomForestClassifier         |   0.97193  |            0.969594 |  0.969594 |   0.97193  |    0.033     |
| GradientBoostingClassifier     |   0.97193  |            0.967486 |  0.967486 |   0.971869 |    0.166998  |
| QuadraticDiscriminantAnalysis  |   0.964912 |            0.966206 |  0.966206 |   0.965052 |    0.0119994 |
| HistGradientBoostingClassifier |   0.968421 |            0.964739 |  0.964739 |   0.968387 |    0.682003  |
| RidgeClassifierCV              |   0.97193  |            0.963272 |  0.963272 |   0.971736 |    0.0130029 |
| RidgeClassifier                |   0.968421 |            0.960525 |  0.960525 |   0.968242 |    0.0119977 |
| AdaBoostClassifier             |   0.961404 |            0.959245 |  0.959245 |   0.961444 |    0.204998  |
| ExtraTreesClassifier           |   0.961404 |            0.957138 |  0.957138 |   0.961362 |    0.0270066 |
| KNeighborsClassifier           |   0.961404 |            0.95503  |  0.95503  |   0.961276 |    0.0560005 |
| BaggingClassifier              |   0.947368 |            0.954577 |  0.954577 |   0.947882 |    0.0559971 |
| BernoulliNB                    |   0.950877 |            0.951003 |  0.951003 |   0.951072 |    0.0169988 |
| LinearDiscriminantAnalysis     |   0.961404 |            0.950816 |  0.950816 |   0.961089 |    0.0199995 |
| GaussianNB                     |   0.954386 |            0.949536 |  0.949536 |   0.954337 |    0.0139935 |
| NuSVC                          |   0.954386 |            0.943215 |  0.943215 |   0.954014 |    0.019989  |
| DecisionTreeClassifier         |   0.936842 |            0.933693 |  0.933693 |   0.936971 |    0.0170023 |
| NearestCentroid                |   0.947368 |            0.933506 |  0.933506 |   0.946801 |    0.0160074 |
| ExtraTreeClassifier            |   0.922807 |            0.912168 |  0.912168 |   0.922462 |    0.0109999 |
| CheckingClassifier             |   0.361404 |            0.5      |  0.5      |   0.191879 |    0.0170043 |
| DummyClassifier                |   0.512281 |            0.489598 |  0.489598 |   0.518924 |    0.0119965 |

==========

Regression

Example ::

from lazypredict.Supervised import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np

boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)

offset = int(X.shape[0] * 0.9)

X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)

print(models)


| Model                         | Adjusted R-Squared | R-Squared |  RMSE | Time Taken |
|:------------------------------|-------------------:|----------:|------:|-----------:|
| SVR                           |               0.83 |      0.88 |  2.62 |       0.01 |
| BaggingRegressor              |               0.83 |      0.88 |  2.63 |       0.03 |
| NuSVR                         |               0.82 |      0.86 |  2.76 |       0.03 |
| RandomForestRegressor         |               0.81 |      0.86 |  2.78 |       0.21 |
| XGBRegressor                  |               0.81 |      0.86 |  2.79 |       0.06 |
| GradientBoostingRegressor     |               0.81 |      0.86 |  2.84 |       0.11 |
| ExtraTreesRegressor           |               0.79 |      0.84 |  2.98 |       0.12 |
| AdaBoostRegressor             |               0.78 |      0.83 |  3.04 |       0.07 |
| HistGradientBoostingRegressor |               0.77 |      0.83 |  3.06 |       0.17 |
| PoissonRegressor              |               0.77 |      0.83 |  3.11 |       0.01 |
| LGBMRegressor                 |               0.77 |      0.83 |  3.11 |       0.07 |
| KNeighborsRegressor           |               0.77 |      0.83 |  3.12 |       0.01 |
| DecisionTreeRegressor         |               0.65 |      0.74 |  3.79 |       0.01 |
| MLPRegressor                  |               0.65 |      0.74 |  3.80 |       1.63 |
| HuberRegressor                |               0.64 |      0.74 |  3.84 |       0.01 |
| GammaRegressor                |               0.64 |      0.73 |  3.88 |       0.01 |
| LinearSVR                     |               0.62 |      0.72 |  3.96 |       0.01 |
| RidgeCV                       |               0.62 |      0.72 |  3.97 |       0.01 |
| BayesianRidge                 |               0.62 |      0.72 |  3.97 |       0.01 |
| Ridge                         |               0.62 |      0.72 |  3.97 |       0.01 |
| TransformedTargetRegressor    |               0.62 |      0.72 |  3.97 |       0.01 |
| LinearRegression              |               0.62 |      0.72 |  3.97 |       0.01 |
| ElasticNetCV                  |               0.62 |      0.72 |  3.98 |       0.04 |
| LassoCV                       |               0.62 |      0.72 |  3.98 |       0.06 |
| LassoLarsIC                   |               0.62 |      0.72 |  3.98 |       0.01 |
| LassoLarsCV                   |               0.62 |      0.72 |  3.98 |       0.02 |
| Lars                          |               0.61 |      0.72 |  3.99 |       0.01 |
| LarsCV                        |               0.61 |      0.71 |  4.02 |       0.04 |
| SGDRegressor                  |               0.60 |      0.70 |  4.07 |       0.01 |
| TweedieRegressor              |               0.59 |      0.70 |  4.12 |       0.01 |
| GeneralizedLinearRegressor    |               0.59 |      0.70 |  4.12 |       0.01 |
| ElasticNet                    |               0.58 |      0.69 |  4.16 |       0.01 |
| Lasso                         |               0.54 |      0.66 |  4.35 |       0.02 |
| RANSACRegressor               |               0.53 |      0.65 |  4.41 |       0.04 |
| OrthogonalMatchingPursuitCV   |               0.45 |      0.59 |  4.78 |       0.02 |
| PassiveAggressiveRegressor    |               0.37 |      0.54 |  5.09 |       0.01 |
| GaussianProcessRegressor      |               0.23 |      0.43 |  5.65 |       0.03 |
| OrthogonalMatchingPursuit     |               0.16 |      0.38 |  5.89 |       0.01 |
| ExtraTreeRegressor            |               0.08 |      0.32 |  6.17 |       0.01 |
| DummyRegressor                |              -0.38 |     -0.02 |  7.56 |       0.01 |
| LassoLars                     |              -0.38 |     -0.02 |  7.56 |       0.01 |
| KernelRidge                   |             -11.50 |     -8.25 | 22.74 |       0.01 |

.. warning:: Regression and Classification are replaced with LazyRegressor and LazyClassifier. Regression and Classification classes will be removed in next release

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100
No reviews found
Be the first to rate

Alternatives

No alternatives found

Tutorials

No tutorials found
Add a tutorial