hilbertcurve

pypi i hilbertcurve

pypi i hilbertcurve

.. image:: https://travis-ci.com/galtay/hilbertcurve.svg?branch=develop :target: https://travis-ci.com/galtay/hilbertcurve

.. contents:: Table of Contents :depth: 2

============

This is a package to convert between one dimensional distance along a
`Hilbert curve`

_, `h`

, and `n`

-dimensional points,
`(x_0, x_1, ... x_n-1)`

. There are two important parameters,

`n`

-- the number of dimensions (must be > 0)`p`

-- the number of iterations used in constructing the Hilbert curve (must be > 0)

We consider an `n`

-dimensional `hypercube`

_ of side length `2^p`

.
This hypercube contains `2^{n p}`

unit hypercubes (`2^p`

along
each dimension). The number of unit hypercubes determine the possible
discrete distances along the Hilbert curve (indexed from 0 to
`2^{n p} - 1`

).

==========

Install the package with pip,

.. code-block:: bash

pip install hilbertcurve

You can calculate points given distances along a hilbert curve,

.. code-block:: python

from hilbertcurve.hilbertcurve import HilbertCurve p=1; n=2 hilbert_curve = HilbertCurve(p, n) distances = list(range(4)) points = hilbert_curve.points_from_distances(distances) for point, dist in zip(points, distances): print(f'point(h={dist}) = {point}')

point(h=0) = [0, 0] point(h=1) = [0, 1] point(h=2) = [1, 1] point(h=3) = [1, 0]

You can also calculate distances along a hilbert curve given points,

.. code-block:: python

points = [[0,0], [0,1], [1,1], [1,0]] distances = hilbert_curve.distances_from_points(points) for point, dist in zip(points, distances): print(f'distance(x={point}) = {dist}')

distance(x=[0, 0]) = 0 distance(x=[0, 1]) = 1 distance(x=[1, 1]) = 2 distance(x=[1, 0]) = 3

=========================

The `HilbertCurve`

class has four main public methods.

`point_from_distance(distance: int) -> Iterable[int]`

`points_from_distances(distances: Iterable[int], match_type: bool=False) -> Iterable[Iterable[int]]`

`distance_from_point(point: Iterable[int]) -> int`

`distances_from_points(points: Iterable[Iterable[int]], match_type: bool=False) -> Iterable[int]`

Arguments that are type hinted with `Iterable[int]`

have been tested with lists, tuples, and 1-d numpy arrays.
Arguments that are type hinted with `Iterable[Iterable[int]]`

have been tested with list of lists, tuples of tuples, and 2-d numpy arrays with shape (num_points, num_dimensions). The `match_type`

key word argument forces the output iterable to match the type of the input iterable.

The `HilbertCurve`

class also contains some useful metadata derived from the inputs `p`

and `n`

. For instance, you can construct a numpy array of random points on the hilbert curve and calculate their distances in the following way,

.. code-block:: python

from hilbertcurve.hilbertcurve import HilbertCurve p=1; n=2 hilbert_curve = HilbertCurve(p, n) num_points = 10_000

points = np.random.randint(

low=0,

high=hilbert_curve.max_x + 1,

size=(num_points, hilbert_curve.n)

) distances = hilbert_curve.distances_from_points(points) type(distances)

list

distances = hilbert_curve.distances_from_points(points, match_type=True) type(distances)

numpy.ndarray

=========================

You can now take advantage of multiple processes to speed up calculations by using the `n_procs`

keyword argument when creating an instance of `HilbertCurve`

.

.. code-block:: bash

n_procs (int): number of processes to use 0 = dont use multiprocessing -1 = use all available processes any other positive integer = number of processes to use

A value of 0 will completely avoid using the multiprocessing module while a value of 1 will use the multiprocessing module but with a single process. If you want to take advantage of every thread on your computer use the value -1 and if you want something in the middle use a value between 1 and the number of threads on your computer. A concrete example starting with the code block above is,

.. code-block:: python

from hilbertcurve.hilbertcurve import HilbertCurve p=1; n=2 hilbert_curve = HilbertCurve(p, n, n_procs=-1) num_points = 100_000

points = np.random.randint(

low=0,

high=hilbert_curve.max_x + 1,

size=(num_points, hilbert_curve.n)

) distances = hilbert_curve.distances_from_points(points)

The following methods are able to use multiple cores.

`points_from_distances(distances: Iterable[int], match_type: bool=False) -> Iterable[Iterable[int]]`

`distances_from_points(points: Iterable[Iterable[int]], match_type: bool=False) -> Iterable[int]`

=========================

Due to the magic of `arbitrarily large integers in Python`

_,
these calculations can be done with ... well ... arbitrarily large integers!

.. code-block:: python

p = 512; n = 10 hilbert_curve = HilbertCurve(p, n) ii = 123456789101112131415161718192021222324252627282930 point = hilbert_curve.points_from_distances([ii])[0] print(f'point = {point}')

point = [121075, 67332, 67326, 108879, 26637, 43346, 23848, 1551, 68130, 84004]

The calculations above represent the 512th iteration of the Hilbert curve in 10 dimensions.
The maximum value along any coordinate axis is an integer with 155 digits and the maximum
distance along the curve is an integer with 1542 digits. For comparison,
`an estimate of the number of atoms in the observable universe`

_
is `10^{82}`

(i.e. an integer with 83 digits).

=======

.. figure:: https://raw.githubusercontent.com/galtay/hilbertcurve/main/n2_p3.png

The figure above shows the first three iterations of the Hilbert
curve in two (`n=2`

) dimensions. The `p=1`

iteration is shown
in red, `p=2`

in blue, and `p=3`

in black.
For the `p=3`

iteration, distances, `h`

, along the curve are
labeled from 0 to 63 (i.e. from 0 to `2^{n p}-1`

). This package
provides methods to translate between `n`

-dimensional points and one
dimensional distance. For example, between (`x_0=4, x_1=6`

) and
`h=36`

. Note that the `p=1`

and `p=2`

iterations have been
scaled and translated to the coordinate system of the `p=3`

iteration.

An animation of the same case in 3-D is available on YouTube. To watch the video, click the link below. Once the YouTube video loads, you can right click on it and turn "Loop" on to watch the curve rotate continuously.

.. figure:: https://img.youtube.com/vi/TfJEJidwkBQ/0.jpg

3-D Hilbert Curve Animation https://www.youtube.com/watch?v=TfJEJidwkBQ

=========

This module is based on the C code provided in the 2004 article "Programming the Hilbert Curve" by John Skilling,

I was also helped by the discussion in the following stackoverflow post,

`mapping-n-dimensional-value-to-a-point-on-hilbert-curve`

_

which points out a typo in the source code of the paper. The Skilling code
provides two functions `TransposetoAxes`

and `AxestoTranspose`

. In this
case, Transpose refers to a specific packing of the integer that represents
distance along the Hilbert curve (see below for details) and
Axes refer to the n-dimensional coordinates. Below is an excerpt from the
documentation of Skilling's code,

::

```
//+++++++++++++++++++++++++++ PUBLIC-DOMAIN SOFTWARE ++++++++++++++++++++++++++
// Functions: TransposetoAxes AxestoTranspose
// Purpose: Transform in-place between Hilbert transpose and geometrical axes
// Example: b=5 bits for each of n=3 coordinates.
// 15-bit Hilbert integer = A B C D E F G H I J K L M N O is stored
// as its Transpose
// X[0] = A D G J M X[2]|
// X[1] = B E H K N <-------> | /X[1]
// X[2] = C F I L O axes |/
// high low 0------ X[0]
// Axes are stored conveniently as b-bit integers.
// Author: John Skilling 20 Apr 2001 to 11 Oct 2003
```

============

Version 2.0 introduces some breaking changes.

Previous versions transformed a single distance to a vector or a single vector to a distance.

`coordinates_from_distance(self, h: int) -> List[int]`

`distance_from_coordinates(self, x_in: List[int]) -> int`

In version 2.0 coordinates -> point(s) and we add methods to handle multiple distances or multiple points.
The `match_type`

kwarg forces the output type to match the input type and all functions can handle tuples,
lists, and ndarrays.

`point_from_distance(self, distance: int) -> Iterable[int]`

`points_from_distances(self, distances: Iterable[int], match_type: bool=False) -> Iterable[Iterable[int]]`

`distance_from_point(self, point: Iterable[int]) -> int`

`distances_from_points(self, points: Iterable[Iterable[int]], match_type: bool=False) -> Iterable[int]`

The methods that handle multiple distances or multiple points can take advantage of multiple cores.
You can control this behavior using the `n_procs`

kwarg when you create an instance of `HilbertCurve`

.

.. _Hilbert curve: https://en.wikipedia.org/wiki/Hilbert_curve .. _hypercube: https://en.wikipedia.org/wiki/Hypercube .. _arbitrarily large integers in Python: https://docs.python.org/3.3/library/stdtypes.html#numeric-types-int-float-complex .. _an estimate of the number of atoms in the observable universe: https://www.universetoday.com/36302/atoms-in-the-universe .. _mapping-n-dimensional-value-to-a-point-on-hilbert-curve: http://stackoverflow.com/questions/499166/mapping-n-dimensional-value-to-a-point-on-hilbert-curve

Version | Tag | Published |
---|---|---|

2.0.5 | 2yrs ago | |

2.0.4 | 2yrs ago | |

2.0.3 | 2yrs ago | |

2.0.2 | 2yrs ago |

No alternatives found

No tutorials found

Add a tutorialNo dependencies found

No reviews found

Be the first to rateMenu