gt

graph-tiger

Python toolbox to evaluate graph vulnerability and robustness (CIKM 2021)

Showing:

Popularity

Downloads/wk

0

GitHub Stars

75

Maintenance

Last Commit

24d ago

Contributors

1

Package

Dependencies

0

License

MIT

Categories

Readme

Run Python Tests Version Documentation Status License: MIT arXiv

TIGER Library

TIGER is a Python toolbox to conduct graph vulnerability and robustness research. TIGER contains numerous state-of-the-art methods to help users conduct graph vulnerability and robustness analysis on graph structured data. Specifically, TIGER helps users:

  1. Quantify network vulnerability and robustness,
  2. Simulate a variety of network attacks, cascading failures and spread of dissemination of entities
  3. Augment a network's structure to resist attacks and recover from failure
  4. Regulate the dissemination of entities on a network (e.g., viruses, propaganda).

For additional information, take a look at the Documentation and our paper:

Evaluating Graph Vulnerability and Robustness using TIGER. Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and Duen Horng (Polo) Chau. CIKM Resource Track, 2021.


Setup

To quickly get started, install TIGER using pip

$ pip install graph-tiger

Alternatively, you can clone TIGER and create a new Anaconda environment using the YAML file.


Tutorials

We provide 5 in-depth tutorials in the Documentation, each covers a core aspect of TIGER's functionality.

Tutorial 1: Measuring Graph Vulnerability and Robustness

Tutorial 2: Attacking a Network

Tutorial 3: Defending A Network

Tutorial 4: Simulating Cascading Failures on Networks

Tutorial 5: Simulating Entity Dissemination on Networks


Citing

If you find TIGER useful in your research, please consider citing the following paper:

@article{freitas2021evaluating,
    title={Evaluating Graph Vulnerability and Robustness using TIGER},
    author={Freitas, Scott and Yang, Diyi and Kumar, Srijan and Tong, Hanghang and Chau, Duen Horng},
    journal={ACM International Conference on Information and Knowledge Management},
    year={2021}
}

Quick Examples

EX 1. Calculate graph robustness (e.g., spectral radius, effective resistance)

from graph_tiger.measures import run_measure
from graph_tiger.graphs import graph_loader

graph = graph_loader(graph_type='BA', n=1000, seed=1)

spectral_radius = run_measure(graph, measure='spectral_radius')
print("Spectral radius:", spectral_radius)

effective_resistance = run_measure(graph, measure='effective_resistance')
print("Effective resistance:", effective_resistance)
    

EX 2. Run a cascading failure simulation on a Barabasi Albert graph

from graph_tiger.cascading import Cascading
from graph_tiger.graphs import graph_loader

graph = graph_loader('BA', n=400, seed=1)

params = {
    'runs': 1,
    'steps': 100,
    'seed': 1,

    'l': 0.8,
    'r': 0.2,
    'c': int(0.1 * len(graph)),

    'k_a': 30,
    'attack': 'rb_node',
    'attack_approx': int(0.1 * len(graph)),

    'k_d': 0,
    'defense': None,

    'robust_measure': 'largest_connected_component',

    'plot_transition': True,  # False turns off key simulation image "snapshots"
    'gif_animation': False,  # True creaets a video of the simulation (MP4 file)
    'gif_snaps': False,  # True saves each frame of the simulation as an image

    'edge_style': 'bundled',
    'node_style': 'force_atlas',
    'fa_iter': 2000,
}

cascading = Cascading(graph, **params)
results = cascading.run_simulation()

cascading.plot_results(results)
Step 0: Network pre-attackStep 6: Beginning of cascading failureStep 99: Collapse of network

[comment]:

EX 3. Run an SIS virus simulation on a Barabasi Albert graph

from graph_tiger.diffusion import Diffusion
from graph_tiger.graphs import graph_loader

graph = graph_loader('BA', n=400, seed=1)


sis_params = {
    'model': 'SIS',
    'b': 0.001,
    'd': 0.01,
    'c': 1,

    'runs': 1,
    'steps': 5000,
    'seed': 1,

    'diffusion': 'min',
    'method': 'ns_node',
    'k': 5,

    'plot_transition': True,
    'gif_animation': False,

    'edge_style': 'bundled',
    'node_style': 'force_atlas',
    'fa_iter': 2000
}

diffusion = Diffusion(graph, **sis_params)
results = diffusion.run_simulation()

diffusion.plot_results(results)
Step 0: Virus infected networkStep 80: Partially infected networkStep 4999: Virus contained

[comment]:


Techniques Implemented

Vulnerability and Robustness Measures:

Attack Strategies:

Defense Strategies:

Simulation Frameworks:


License

MIT License

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100