entmax

The entmax mapping and its loss, a family of sparse softmax alternatives.

Showing:

Popularity

Downloads/wk

0

GitHub Stars

270

Maintenance

Last Commit

6mos ago

Contributors

6

Package

Dependencies

0

License

MIT

Categories

Readme

Build Status

PyPI version

entmax


This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss functions, generalizing softmax / cross-entropy.

Features:

  • Exact partial-sort algorithms for 1.5-entmax and 2-entmax (sparsemax).
  • A bisection-based algorithm for generic alpha-entmax.
  • Gradients w.r.t. alpha for adaptive, learned sparsity!

Requirements: python 3, pytorch >= 1.0 (and pytest for unit tests)

Example

In [1]: import torch

In [2]: from torch.nn.functional import softmax

In [2]: from entmax import sparsemax, entmax15, entmax_bisect

In [4]: x = torch.tensor([-2, 0, 0.5])

In [5]: softmax(x, dim=0)
Out[5]: tensor([0.0486, 0.3592, 0.5922])

In [6]: sparsemax(x, dim=0)
Out[6]: tensor([0.0000, 0.2500, 0.7500])

In [7]: entmax15(x, dim=0)
Out[7]: tensor([0.0000, 0.3260, 0.6740])

Gradients w.r.t. alpha (continued):

In [1]: from torch.autograd import grad

In [2]: x = torch.tensor([[-1, 0, 0.5], [1, 2, 3.5]])

In [3]: alpha = torch.tensor(1.33, requires_grad=True)

In [4]: p = entmax_bisect(x, alpha)

In [5]: p
Out[5]:
tensor([[0.0460, 0.3276, 0.6264],
        [0.0026, 0.1012, 0.8963]], grad_fn=<EntmaxBisectFunctionBackward>)

In [6]: grad(p[0, 0], alpha)
Out[6]: (tensor(-0.2562),)

Installation

pip install entmax

Citations

Sparse Sequence-to-Sequence Models

@inproceedings{entmax,
  author    = {Peters, Ben and Niculae, Vlad and Martins, Andr{\'e} FT},
  title     = {Sparse Sequence-to-Sequence Models},
  booktitle = {Proc. ACL},
  year      = {2019},
  url       = {https://www.aclweb.org/anthology/P19-1146}
}

Adaptively Sparse Transformers

@inproceedings{correia19adaptively,
  author    = {Correia, Gon\c{c}alo M and Niculae, Vlad and Martins, Andr{\'e} FT},
  title     = {Adaptively Sparse Transformers},
  booktitle = {Proc. EMNLP-IJCNLP (to appear)},
  year      = {2019},
}

Further reading:

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100
No reviews found
Be the first to rate

Alternatives

No alternatives found

Tutorials

No tutorials found
Add a tutorial