emb

embeddings

Fast, DB Backed pretrained word embeddings for natural language processing.

Showing:

Popularity

Downloads/wk

0

GitHub Stars

204

Maintenance

Last Commit

5d ago

Contributors

4

Package

Dependencies

8

License

MIT

Categories

Readme

Embeddings

.. image:: https://readthedocs.org/projects/embeddings/badge/?version=latest :target: http://embeddings.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://travis-ci.org/vzhong/embeddings.svg?branch=master :target: https://travis-ci.org/vzhong/embeddings

Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning.

Instead of loading a large file to query for embeddings, embeddings is backed by a database and fast to load and query:

.. code-block:: python

>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300)
100 loops, best of 3: 12.7 ms per loop

>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300).emb('canada')
100 loops, best of 3: 12.9 ms per loop

>>> g = GloveEmbedding('common_crawl_840', d_emb=300)

>>> %timeit -n1 g.emb('canada')
1 loop, best of 3: 38.2 µs per loop

Installation

.. code-block:: sh

pip install embeddings  # from pypi
pip install git+https://github.com/vzhong/embeddings.git  # from github

Usage

Upon first use, the embeddings are first downloaded to disk in the form of a SQLite database. This may take a long time for large embeddings such as GloVe. Further usage of the embeddings are directly queried against the database. Embedding databases are stored in the $EMBEDDINGS_ROOT directory (defaults to ~/.embeddings). Note that this location is probably undesirable if your home directory is on NFS, as it would slow down database queries significantly.

.. code-block:: python

from embeddings import GloveEmbedding, FastTextEmbedding, KazumaCharEmbedding, ConcatEmbedding

g = GloveEmbedding('common_crawl_840', d_emb=300, show_progress=True)
f = FastTextEmbedding()
k = KazumaCharEmbedding()
c = ConcatEmbedding([g, f, k])
for w in ['canada', 'vancouver', 'toronto']:
    print('embedding {}'.format(w))
    print(g.emb(w))
    print(f.emb(w))
    print(k.emb(w))
    print(c.emb(w))

Docker

If you use Docker, an image prepopulated with the Common Crawl 840 GloVe embeddings and Kazuma Hashimoto's character ngram embeddings is available at vzhong/embeddings <https://hub.docker.com/r/vzhong/embeddings>_. To mount volumes from this container, set $EMBEDDINGS_ROOT in your container to /opt/embeddings.

For example:

.. code-block:: bash

docker run --volumes-from vzhong/embeddings -e EMBEDDINGS_ROOT='/opt/embeddings' myimage python train.py

Contribution

Pull requests welcome!

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100