dffml-model-scratch
dffml-model-scratch
pypi i dffml-model-scratch
dffml-model-scratch

dffml-model-scratch

The easiest way to use Machine Learning. Mix and match underlying ML libraries and data set sources. Generate new datasets or modify existing ones with ease.

by intel

0.1.0.post0 (see all)License:MIT
pypi i dffml-model-scratch
Readme

DFFML Scratch Models

About

Models created without a machine learning framework.

Install

$ python3 -m pip install --user dffml-model-scratch

Usage

If we have a dataset of years of experience in a job and the Salary (in thousands) at that job we can use the Simple Linear Regression model to predict a salary given the years of experience (or the other way around).

First we create the file containing the dataset. Then we train the model, get its accuracy. And using echo pipe a new csv file of data to predict into the model, and it will give us it prediction of the Salary.

$ cat > dataset.csv << EOF
Years,Salary
1,40
2,50
3,60
4,70
5,80
EOF
$ dffml train -model scratchslr -model-features Years:int:1 -model-predict Salary -model-directory tempdir -sources f=csv -source-filename dataset.csv -source-readonly -log debug
$ dffml accuracy -model scratchslr -model-features Years:int:1 -model-predict Salary -model-directory tempdir -sources f=csv -source-filename dataset.csv -source-readonly -log debug
1.0
$ echo -e 'Years,Salary\n6,0\n' | dffml predict all -model scratchslr -model-features Years:int:1 -model-predict Salary -model-directory tempdir -sources f=csv -source-filename /dev/stdin -source-readonly -log debug
[
    {
        "extra": {},
        "features": {
            "Salary": 0,
            "Years": 6
        },
        "last_updated": "2019-07-19T09:46:45Z",
        "prediction": {
            "confidence": 1.0,
            "value": 90.0
        },
        "key": "0"
    }
]

License

Scratch Models are distributed under the terms of the MIT License.

VersionTagPublished
0.1.0.post0
2yrs ago
0.1.0
2yrs ago
0.0.8
3yrs ago
0.0.7
3yrs ago
No alternatives found
No tutorials found
Add a tutorial
No dependencies found

Rate & Review

100
No reviews found
Be the first to rate