deel

Deel; A High level deep learning description language

Showing:

Popularity

Downloads/wk

0

GitHub Stars

73

Maintenance

Last Commit

4yrs ago

Contributors

6

Package

Dependencies

0

License

MIT

Categories

Readme

Deel

Deel; A High level deep neural network description language.

You can create your own deep neural network application in a second.

logo

Goal

Describe deep neural network, training and using in simple syntax.

Dependency

Chainer 1.7.1 or higher

Python 2.7.8 or highter

(Optional) OpenCv 2.4.12 or higher

Install and test

$ git clone https://github.com/uei/deel.git
$ cd deel
$ python setup.py install
$ cd deel/data
$ ./getCaltech101.sh
$ cd ../misc
$ ./getPretrainedModels.sh
$ cd ..
$ python test.py

Examples

CNN classifier

deel = Deel()

CNN = GoogLeNet()

CNN.Input("deel.png")
CNN.classify()
ShowLabels()

CNN trainer

nin = NetworkInNetwork()

InputBatch(train="data/train.txt",
            val="data/test.txt")

def workout(x,t):
    nin.classify(x) 
    return nin.backprop(t)

BatchTrain(workout)

CNN classifier with OpenCV camera (you need OpenCV2)

import cv2 
from deel import *
from deel.network import *
from deel.commands import *

deel = Deel()

CNN = GoogLeNet()

cam = cv2.VideoCapture(0)  

while True:
    ret, img = cam.read()  
    CNN.Input(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    CNN.classify()

    labels = GetLabels()
    if labels[0][1] == 'Band':
        print('BAND')
        cv2.imwrite('band.png',img)

    cv2.imshow('cam', img)
    if cv2.waitKey(10) > 0:
        break
cam.release()
cv2.destroyAllWindows()

CNN-DQN with Unity (using with https://github.com/wbap/ml-agent-for-unity)

from deel import *
from deel.network import *
from deel.commands import *
from deel.agentServer import *

deel = Deel()

CNN = AlexNet()
QNET = DQN()

def trainer(x):
    CNN.feature(x)
    return QNET.actionAndLearn()

StartAgent(trainer)

ResNet Inferrence

from deel import *
from deel.network import *
from deel.network.googlenet import *
from deel.network.resnet152 import *
from deel.commands import *
import time
deel = Deel()

CNN = ResNet152()
CNN.Input("test.jpg")
CNN.classify()
ShowLabels()

ResNet Finetuning

from deel import *
from deel.network import *
from deel.commands import *
from deel.network.resnet152 import *
#from deel.network.googlenet import *
import chainer.functions as F
import time

deel = Deel(gpu=-1)

CNN = ResNet152()

InputBatch(train="data/train.txt",
            val="data/test.txt")

def workout(x,t):
   CNN.batch_feature(x,t) 
   return CNN.backprop(t)

def checkout():
   CNN.save('model_google_cpu.hdf5')

BatchTrain(workout,checkout)

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100
No reviews found
Be the first to rate

Alternatives

No alternatives found

Tutorials

No tutorials found
Add a tutorial