Computer Vision Tool Library
cvtools is a helpful python library for computer vision.
It provides the following functionalities.
See the documentation for more features and usage.
Try and start with
pip install cvtoolss
Note: There are two s at the end.
or install from source
git clone https://github.com/gfjiangly/cvtools.git
cd cvtools
pip install . # (add "-e" if you want to develop or modify the codes)
convert voc-like dataset to coco-like dataset
import cvtools
mode = 'train'
root = 'D:/data/VOCdevkit/VOC2007'
# The cls parameter is a file containing categories,
# one category string is one line
voc_to_coco = cvtools.VOC2COCO(root, mode=mode,
cls='voc/cls.txt')
voc_to_coco.convert()
voc_to_coco.save_json(to_file='voc/{}.json'.format(mode))
convert dota dataset to coco-like dataset.
import cvtools
# convert dota dataset to coco dataset format
# label folder
label_root = '/media/data/DOTA/train/labelTxt/'
# imgage folder
image_root = '/media/data/DOTA/train/images/'
dota_to_coco = cvtools.DOTA2COCO(label_root, image_root)
dota_to_coco.convert()
save = 'dota/train_dota_x1y1wh_polygen.json'
dota_to_coco.save_json(save)
coco-like dataset analysis
import cvtools
# imgage folder
img_prefix = '/media/data/DOTA/train/images'
# position you save in dataset convertion.
ann_file = '../label_convert/dota/train_dota_x1y1wh_polygen.json'
coco_analysis = cvtools.COCOAnalysis(img_prefix, ann_file)
save = 'dota/vis_dota_whole/'
coco_analysis.vis_instances(save,
vis='segmentation',
box_format='x1y1x2y2x3y3x4y4')
# Size distribution analysis for each category
save = 'size_per_cat_data.json'
coco_analysis.stats_size_per_cat(save)
# Average number of targets per image for each category
save = 'stats_num.json'
coco_analysis.stats_objs_per_img(save)
# Analysis of target quantity per category
save = 'objs_per_cat_data.json'
coco_analysis.stats_objs_per_cat(save)
save = 'dota/bbox_distribution/'
coco_analysis.cluster_analysis(save, name_clusters=('area', ))
# and so on...
Version | Tag | Published |
---|---|---|
0.0.6a1 | 3yrs ago | |
0.0.5 | 3yrs ago | |
0.0.2 | 4yrs ago | |
0.0.1 | 4yrs ago |