con

convtools

convtools is a python library to declaratively define conversions for processing collections, doing complex aggregations and joins.

Showing:

Popularity

Downloads/wk

0

GitHub Stars

0

Maintenance

Last Commit

21hrs ago

Contributors

3

Package

Dependencies

5

License

mit

Categories

Readme

=========

convtools

convtools is a python library to declaratively define conversions for processing collections, doing complex aggregations and joins.

Once a conversion is defined, it can be compiled into an ad hoc code OR be reused for building more complex conversions.

.. image:: https://img.shields.io/pypi/pyversions/convtools.svg :target: https://pypi.org/project/convtools/

.. image:: https://img.shields.io/github/license/westandskif/convtools.svg :target: https://github.com/westandskif/convtools/blob/master/LICENSE.txt

.. image:: https://codecov.io/gh/westandskif/convtools/branch/master/graph/badge.svg :target: https://codecov.io/gh/westandskif/convtools

.. image:: https://github.com/westandskif/convtools/workflows/tests/badge.svg :target: https://github.com/westandskif/convtools/workflows/tests/badge.svg :alt: Tests Status

.. image:: https://readthedocs.org/projects/convtools/badge/?version=latest :target: https://convtools.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

.. image:: https://img.shields.io/github/tag/westandskif/convtools.svg :target: https://GitHub.com/westandskif/convtools/tags/

.. image:: https://badge.fury.io/py/convtools.svg :target: https://badge.fury.io/py/convtools

.. image:: https://pepy.tech/badge/convtools :target: https://pepy.tech/project/convtools :alt: Downloads

.. image:: https://badges.gitter.im/python-convtools/community.svg :target: https://gitter.im/python-convtools/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge :alt: Chat on Gitter

Docs

  • convtools on Read the Docs <https://convtools.readthedocs.io/en/latest/>_
  • Cheatsheet <https://convtools.readthedocs.io/en/latest/cheatsheet.html>_
  • QuickStart <https://convtools.readthedocs.io/en/latest/quick_start.html>_

What's the workflow?

#. from convtools import conversion as c #. define conversions #. (optional) store them somewhere for further reuse #. call gen_converter method to compile the conversion into a function, written with an ad hoc code #. (optional) it's totally fine to generate converters at runtime, for simple conversions it takes less than 0.1-0.2 milliseconds to get compiled.

Please, see simple examples of group by, aggregate and join conversions below.

.. code-block:: python

from convtools import conversion as c


def test_doc__index_intro():

    # ======== #
    # GROUP BY #
    # ======== #
    input_data = [
        {"a": 5, "b": "foo"},
        {"a": 10, "b": "foo"},
        {"a": 10, "b": "bar"},
        {"a": 10, "b": "bar"},
        {"a": 20, "b": "bar"},
    ]

    conv = (
        c.group_by(c.item("b"))
        .aggregate(
            {
                "b": c.item("b"),
                "a_first": c.ReduceFuncs.First(c.item("a")),
                "a_max": c.ReduceFuncs.Max(c.item("a")),
            }
        )
        .gen_converter(debug=True)
    )

    assert conv(input_data) == [
        {"b": "foo", "a_first": 5, "a_max": 10},
        {"b": "bar", "a_first": 10, "a_max": 20},
    ]

    # ========= #
    # AGGREGATE #
    # ========= #
    conv = c.aggregate(
        {
            # list of "a" values where "b" equals to "bar"
            "a": c.ReduceFuncs.Array(c.item("a"), where=c.item("b") == "bar"),
            # "b" value of a row where "a" has Max value
            "b": c.ReduceFuncs.MaxRow(
                c.item("a"),
            ).item("b", default=None),
        }
    ).gen_converter(debug=True)

    assert conv(input_data) == {"a": [10, 10, 20], "b": "bar"}

    # ==== #
    # JOIN #
    # ==== #
    collection_1 = [
        {"id": 1, "name": "Nick"},
        {"id": 2, "name": "Joash"},
        {"id": 3, "name": "Bob"},
    ]
    collection_2 = [
        {"ID": "3", "age": 17, "country": "GB"},
        {"ID": "2", "age": 21, "country": "US"},
        {"ID": "1", "age": 18, "country": "CA"},
    ]
    input_data = (collection_1, collection_2)

    conv = (
        c.join(
            c.item(0),
            c.item(1),
            c.and_(
                c.LEFT.item("id") == c.RIGHT.item("ID").as_type(int),
                c.RIGHT.item("age") >= 18,
            ),
            how="left",
        )
        .pipe(
            c.list_comp(
                {
                    "id": c.item(0, "id"),
                    "name": c.item(0, "name"),
                    "age": c.item(1, "age", default=None),
                    "country": c.item(1, "country", default=None),
                }
            )
        )
        .gen_converter(debug=True)
    )

    assert conv(input_data) == [
        {"id": 1, "name": "Nick", "age": 18, "country": "CA"},
        {"id": 2, "name": "Joash", "age": 21, "country": "US"},
        {"id": 3, "name": "Bob", "age": None, "country": None},
    ]

Also there are more after the Installation section.

Why would you need this?

  • you love functional programming
  • you believe that Python is awesome enough to have powerful aggregations and joins
  • you need to serialize/deserialize objects
  • you need to define dynamic data transforms based on some input, which becomes available at runtime
  • you like the idea of having something else write an unpleasant ad hoc code for you
  • you want to reuse field-wise transformations across the project without worrying about huge overhead of calling tens of functions per row/object, especially when there are thousands of them to be processed

Is it any different from tools like Pandas?

  • convtools doesn't need to wrap data in any container to provide useful API, it just writes ad hoc python code under the hood
  • convtools is a lightweight library with no dependencies (however optional black is highly recommended for pretty-printing generated code when debugging)
  • convtools is about defining and reusing conversions -- declarative approach, while wrapping data in high-performance containers is more of being imperative

Description

The speed of convtools comes from the approach of generating code & compiling conversion functions, which don't have any generic code like superfluous loops, ifs, unnecessary function calls, etc.

So you can keep following the DRY principle by storing and reusing the code on the python expression level, but at the same time be able to run the gen_converter and get the compiled code which doesn't care about being DRY and is generated to be highly specialized for the specific need.


There are group_by & aggregate conversions with many useful reducers:

  • from common Sum, Max
  • and less widely supported First/Last, Array/ArrayDistinct
  • to DictSum-like ones (for nested aggregation) and MaxRow/MinRow (for finding an object with max/min value and further processing)

There is a join conversion (inner, left, right, outer, cross are supported), which processes 2 iterables and returns a generator of joined pairs.

Thanks to pipes & labels it's possible to define multiple pipelines of data processing, including branching and merging of them.

Tapping allows to add mutation steps not to rebuild objects from the scratch at every step.


Every conversion:

  • contains the information of how to transform an input
  • can be piped into another conversion (same as wrapping)
  • has a method gen_converter returning a function compiled at runtime
  • despite being compiled at runtime, it remains debuggable with both pdb and pydevd

Installation:

.. code-block:: bash

pip install convtools

All-in-one example #1: deserialization & data preps

.. code-block:: python

from datetime import date, datetime
from decimal import Decimal

from convtools import conversion as c


def test_doc__index_deserialization():
    class Employee:
        def __init__(self, **kwargs):
            self.kwargs = kwargs

    input_data = {
        "objects": [
            {
                "id": 1,
                "first_name": "john",
                "last_name": "black",
                "dob": None,
                "salary": "1,000.00",
                "department": "D1 ",
                "date": "2000-01-01",
            },
            {
                "id": 2,
                "first_name": "bob",
                "last_name": "wick",
                "dob": "1900-01-01",
                "salary": "1,001.00",
                "department": "D3 ",
                "date": "2000-01-01",
            },
        ]
    }

    # get by "department" key and then call method "strip"
    department = c.item("department").call_method("strip")
    first_name = c.item("first_name").call_method("capitalize")
    last_name = c.item("last_name").call_method("capitalize")

    # call "format" method of a string and pass first & last names as
    # parameters
    full_name = c("{} {}").call_method("format", first_name, last_name)
    date_of_birth = c.item("dob")

    # partially initialized "strptime"
    parse_date = c.call_func(
        datetime.strptime, c.this(), "%Y-%m-%d"
    ).call_method("date")

    conv = (
        c.item("objects")
        .pipe(
            c.generator_comp(
                {
                    "id": c.item("id"),
                    "first_name": first_name,
                    "last_name": last_name,
                    "full_name": full_name,
                    "date_of_birth": c.if_(
                        date_of_birth,
                        date_of_birth.pipe(parse_date),
                        None,
                    ),
                    "salary": c.call_func(
                        Decimal,
                        c.item("salary").call_method("replace", ",", ""),
                    ),
                    # pass a hardcoded dict and to get value by "department"
                    # key
                    "department_id": c.naive(
                        {
                            "D1": 10,
                            "D2": 11,
                            "D3": 12,
                        }
                    ).item(department),
                    "date": c.item("date").pipe(parse_date),
                }
            )
        )
        .pipe(
            c.dict_comp(
                c.item("id"),  # key
                # write a python code expression, format with passed parameters
                c.inline_expr("{employee_cls}(**{kwargs})").pass_args(
                    employee_cls=Employee,
                    kwargs=c.this(),
                ),  # value
            )
        )
        .gen_converter(debug=True)
    )

    result = conv(input_data)
    assert result[1].kwargs == {
        "date": date(2000, 1, 1),
        "date_of_birth": None,
        "department_id": 10,
        "first_name": "John",
        "full_name": "John Black",
        "id": 1,
        "last_name": "Black",
        "salary": Decimal("1000.00"),
    }
    assert result[2].kwargs == {
        "date": date(2000, 1, 1),
        "date_of_birth": date(1900, 1, 1),
        "department_id": 12,
        "first_name": "Bob",
        "full_name": "Bob Wick",
        "id": 2,
        "last_name": "Wick",
        "salary": Decimal("1001.00"),
    }

Under the hood the compiled code is as follows:

.. code-block:: python

def converter2n(data): global labels return { i_0t["id"]: (Employee_vk(**i_0t)) for i_0t in ( { "id": i_n7["id"], "first_name": i_n7["first_name"].capitalize(), "last_name": i_n7["last_name"].capitalize(), "full_name": "{} {}".format( i_n7["first_name"].capitalize(), i_n7["last_name"].capitalize(), ), "date_of_birth": ( ( strptime_db(i_n7["dob"], "%Y-%m-%d").date() if i_n7["dob"] else None ) ), "salary": Decimal_tr(i_n7["salary"].replace(",", "")), "department_id": v_g6[i_n7["department"].strip()], "date": strptime_db(i_n7["date"], "%Y-%m-%d").date(), } for i_n7 in data["objects"] ) }

All-in-one example #2: word count

.. code-block:: python

import re
from itertools import chain

from convtools import conversion as c


def test_doc__index_word_count():

    # Let's say we need to count words across all files
    input_data = [
        "war-and-peace-1.txt",
        "war-and-peace-2.txt",
        "war-and-peace-3.txt",
        "war-and-peace-4.txt",
    ]

    # # iterate an input and read file lines
    #
    # def read_file(filename):
    #     with open(filename) as f:
    #         for line in f:
    #             yield line
    # extract_strings = c.generator_comp(c.call_func(read_file, c.this()))

    # to simplify testing
    extract_strings = c.generator_comp(
        c.call_func(lambda filename: [filename], c.this())
    )

    # 1. make ``re`` pattern available to the code to be generated
    # 2. call ``finditer`` method of the pattern and pass the string
    #    as an argument
    # 3. pass the result to the next conversion
    # 4. iterate results, call ``.group()`` method of each re.Match
    #    and call ``.lower()`` on each result
    split_words = (
        c.naive(re.compile(r"\w+"))
        .call_method("finditer", c.this())
        .pipe(
            c.generator_comp(
                c.this().call_method("group", 0).call_method("lower")
            )
        )
    )

    # ``extract_strings`` is the generator of strings
    # so we iterate it and pass each item to ``split_words`` conversion
    vectorized_split_words = c.generator_comp(c.this().pipe(split_words))

    # flattening the result of ``vectorized_split_words``, which is
    # a generator of generators of strings
    flatten = c.call_func(
        chain.from_iterable,
        c.this(),
    )

    # aggregate the input, the result is a single dict
    # words are keys, values are count of words
    dict_word_to_count = c.aggregate(
        c.ReduceFuncs.DictCount(c.this(), c.this(), default=dict)
    )

    # take top N words by:
    #  - call ``.items()`` method of the dict (the result of the aggregate)
    #  - pass the result to ``sorted``
    #  - take the slice, using input argument named ``top_n``
    #  - cast to a dict
    take_top_n = (
        c.this()
        .call_method("items")
        .sort(key=lambda t: t[1], reverse=True)
        .pipe(c.this()[: c.input_arg("top_n")])
        .as_type(dict)
    )

    # the resulting pipeline is pretty self-descriptive, except the ``c.if_``
    # part, which checks the condition (first argument),
    # and returns the 2nd if True OR the 3rd (input data by default) otherwise
    pipeline = (
        extract_strings.pipe(flatten)
        .pipe(vectorized_split_words)
        .pipe(flatten)
        .pipe(dict_word_to_count)
        .pipe(
            c.if_(
                c.input_arg("top_n").is_not(None),
                c.this().pipe(take_top_n),
            )
        )
        # Define the resulting converter function signature.  In fact this
        # isn't necessary if you don't need to specify default values
    ).gen_converter(debug=True, signature="data_, top_n=None")

    assert pipeline(input_data, top_n=3) == {"war": 4, "and": 4, "peace": 4}

Generated code:

.. code-block:: python

def aggregateao(data): global labels _none = v_vl agg_dataaov0 = _none expected_checksum = 1 checksum = 0 it = iter(data_)

   for row__ao in it_:
       if agg_data__ao_v0 is _none:
           agg_data__ao_v0 = {row__ao: 1}
           break

   for row__ao in it_:
       if row__ao not in agg_data__ao_v0:
           agg_data__ao_v0[row__ao] = 1
       else:
           agg_data__ao_v0[row__ao] = agg_data__ao_v0[row__ao] + 1

   return dict() if agg_data__ao_v0 is _none else agg_data__ao_v0

def pipeho(inputho, topn): global labels return ( dict( sorted(inputho.items(), key=lambda_0r, reverse=True)[ (slice(None, top_n, None)) ] ) if (top_n is not None) else inputho )

def converterdg(data, topn=None): global labels return pipeho( aggregateao( fromiterable_tq( ( (i_3u.group(0).lower() for i_3u in v_vq.finditer(i_zs)) for i_zs in from_iterable_tq( (lambda_cq(i_y4) for i_y4 in data) ) ) ) ), top_n, )

Docs

  • convtools on Read the Docs <https://convtools.readthedocs.io/en/latest/>_
  • Cheatsheet <https://convtools.readthedocs.io/en/latest/cheatsheet.html>_
  • QuickStart <https://convtools.readthedocs.io/en/latest/quick_start.html>_

Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100