BNLP is a natural language processing toolkit for Bengali Language. This tool will help you to tokenize Bengali text, Embedding Bengali words, Bengali POS Tagging, Bengali Name Entity Recognition, Construct Neural Model for Bengali NLP purposes.
pip install bnlp_toolkit
or Upgrade
pip install -U bnlp_toolkit
from bnlp import BasicTokenizer
basic_tokenizer = BasicTokenizer()
raw_text = "আমি বাংলায় গান গাই।"
tokens = basic_tokenizer.tokenize(raw_text)
print(tokens)
# output: ["আমি", "বাংলায়", "গান", "গাই", "।"]
NLTK Tokenization
from bnlp import NLTKTokenizer
bnltk = NLTKTokenizer()
text = "আমি ভাত খাই। সে বাজারে যায়। তিনি কি সত্যিই ভালো মানুষ?"
word_tokens = bnltk.word_tokenize(text)
sentence_tokens = bnltk.sentence_tokenize(text)
print(word_tokens)
print(sentence_tokens)
# output
# word_token: ["আমি", "ভাত", "খাই", "।", "সে", "বাজারে", "যায়", "।", "তিনি", "কি", "সত্যিই", "ভালো", "মানুষ", "?"]
# sentence_token: ["আমি ভাত খাই।", "সে বাজারে যায়।", "তিনি কি সত্যিই ভালো মানুষ?"]
Bengali SentencePiece Tokenization
tokenization using trained model
from bnlp import SentencepieceTokenizer
bsp = SentencepieceTokenizer()
model_path = "./model/bn_spm.model"
input_text = "আমি ভাত খাই। সে বাজারে যায়।"
tokens = bsp.tokenize(model_path, input_text)
print(tokens)
text2id = bsp.text2id(model_path, input_text)
print(text2id)
id2text = bsp.id2text(model_path, text2id)
print(id2text)
Training SentencePiece
from bnlp import SentencepieceTokenizer
bsp = SentencepieceTokenizer()
data = "raw_text.txt"
model_prefix = "test"
vocab_size = 5
bsp.train(data, model_prefix, vocab_size)
Bengali Word2Vec
Generate Vector using pretrain model
from bnlp import BengaliWord2Vec
bwv = BengaliWord2Vec()
model_path = "bengali_word2vec.model"
word = 'গ্রাম'
vector = bwv.generate_word_vector(model_path, word)
print(vector.shape)
print(vector)
Find Most Similar Word Using Pretrained Model
from bnlp import BengaliWord2Vec
bwv = BengaliWord2Vec()
model_path = "bengali_word2vec.model"
word = 'গ্রাম'
similar = bwv.most_similar(model_path, word, topn=10)
print(similar)
Train Bengali Word2Vec with your own data
Train Bengali word2vec with your custom raw data or tokenized sentences.
custom tokenized sentence format example:
sentences = [['আমি', 'ভাত', 'খাই', '।'], ['সে', 'বাজারে', 'যায়', '।']]
Check gensim word2vec api for details of training parameter
from bnlp import BengaliWord2Vec
bwv = BengaliWord2Vec()
data_file = "raw_text.txt" # or you can pass custom sentence tokens as list of list
model_name = "test_model.model"
vector_name = "test_vector.vector"
bwv.train(data_file, model_name, vector_name, epochs=5)
```
Pre-train or resume word2vec training with same or new corpus or tokenized sentences
Check gensim word2vec api for details of training parameter
from bnlp import BengaliWord2Vec
bwv = BengaliWord2Vec()
trained_model_path = "mytrained_model.model"
data_file = "raw_text.txt"
model_name = "test_model.model"
vector_name = "test_vector.vector"
bwv.pretrain(trained_model_path, data_file, model_name, vector_name, epochs=5)
Bengali FastText
To use fasttext
you need to install fasttext manually by pip install fasttext==0.9.2
NB: fasttext
may not be worked in windows
, it will only work in linux
```py
from bnlp.embedding.fasttext import BengaliFasttext
bft = BengaliFasttext()
word = "গ্রাম"
model_path = "bengali_fasttext_wiki.bin"
word_vector = bft.generate_word_vector(model_path, word)
print(word_vector.shape)
print(word_vector)
```
- Train Bengali FastText Model
Check [fasttext documentation](https://fasttext.cc/docs/en/options.html) for details of training parameter
```py
from bnlp.embedding.fasttext import BengaliFasttext
bft = BengaliFasttext()
data = "raw_text.txt"
model_name = "saved_model.bin"
epoch = 50
bft.train(data, model_name, epoch)
```
- Generate Vector File from Fasttext Binary Model
```py
from bnlp.embedding.fasttext import BengaliFasttext
bft = BengaliFasttext()
model_path = "mymodel.bin"
out_vector_name = "myvector.txt"
bft.bin2vec(model_path, out_vector_name)
```
Bengali GloVe Word Vectors
We trained glove model with bengali data(wiki+news articles) and published bengali glove word vectors
You can download and use it on your different machine learning purposes.
from bnlp import BengaliGlove
glove_path = "bn_glove.39M.100d.txt"
word = "গ্রাম"
bng = BengaliGlove()
res = bng.closest_word(glove_path, word)
print(res)
vec = bng.word2vec(glove_path, word)
print(vec)
Find Pos Tag Using Pretrained Model
from bnlp import POS
bn_pos = POS()
model_path = "model/bn_pos.pkl"
text = "আমি ভাত খাই।" # or you can pass ['আমি', 'ভাত', 'খাই', '।']
res = bn_pos.tag(model_path, text)
print(res)
# [('আমি', 'PPR'), ('ভাত', 'NC'), ('খাই', 'VM'), ('।', 'PU')]
Train POS Tag Model
from bnlp import POS
bn_pos = POS()
model_name = "pos_model.pkl"
train_data = [[('রপ্তানি', 'JJ'), ('দ্রব্য', 'NC'), ('-', 'PU'), ('তাজা', 'JJ'), ('ও', 'CCD'), ('শুকনা', 'JJ'), ('ফল', 'NC'), (',', 'PU'), ('আফিম', 'NC'), (',', 'PU'), ('পশুচর্ম', 'NC'), ('ও', 'CCD'), ('পশম', 'NC'), ('এবং', 'CCD'),('কার্পেট', 'NC'), ('৷', 'PU')], [('মাটি', 'NC'), ('থেকে', 'PP'), ('বড়জোর', 'JQ'), ('চার', 'JQ'), ('পাঁচ', 'JQ'), ('ফুট', 'CCL'), ('উঁচু', 'JJ'), ('হবে', 'VM'), ('৷', 'PU')]]
test_data = [[('রপ্তানি', 'JJ'), ('দ্রব্য', 'NC'), ('-', 'PU'), ('তাজা', 'JJ'), ('ও', 'CCD'), ('শুকনা', 'JJ'), ('ফল', 'NC'), (',', 'PU'), ('আফিম', 'NC'), (',', 'PU'), ('পশুচর্ম', 'NC'), ('ও', 'CCD'), ('পশম', 'NC'), ('এবং', 'CCD'),('কার্পেট', 'NC'), ('৷', 'PU')], [('মাটি', 'NC'), ('থেকে', 'PP'), ('বড়জোর', 'JQ'), ('চার', 'JQ'), ('পাঁচ', 'JQ'), ('ফুট', 'CCL'), ('উঁচু', 'JJ'), ('হবে', 'VM'), ('৷', 'PU')]]
bn_pos.train(model_name, train_data, test_data)
Find NER Tag Using Pretrained Model
from bnlp import NER
bn_ner = NER()
model_path = "model/bn_ner.pkl"
text = "সে ঢাকায় থাকে।" # or you can pass ['সে', 'ঢাকায়', 'থাকে', '।']
result = bn_ner.tag(model_path, text)
print(result)
# [('সে', 'O'), ('ঢাকায়', 'S-LOC'), ('থাকে', 'O')]
Train NER Tag Model
from bnlp import NER
bn_ner = NER()
model_name = "ner_model.pkl"
train_data = [[('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')]]
test_data = [[('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')]]
bn_ner.train(model_name, train_data, test_data)
Stopwords and Punctuations
from bnlp.corpus import stopwords, punctuations, letters, digits
print(stopwords)
print(punctuations)
print(letters)
print(digits)
Remove stopwords from Text
from bnlp.corpus import stopwords
from bnlp.corpus.util import remove_stopwords
raw_text = 'আমি ভাত খাই।'
result = remove_stopwords(raw_text, stopwords)
print(result)
# ['ভাত', 'খাই', '।']
Check CONTRIBUTING.md page for details.
Version | Tag | Published |
---|---|---|
3.1.2 | 1yr ago | |
3.1.1 | 1yr ago | |
3.1.0 | 1yr ago | |
3.1.0.dev0 | 1yr ago |