State-of-the art Automated Machine Learning python library for Tabular Data
Binary Classification
Regression
Multiclass Classification (in progress...)
The bigger, the better
From AutoML-Benchmark
pip install automl-alex
Classifier:
from automl_alex import AutoMLClassifier
model = AutoMLClassifier()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
Regression:
from automl_alex import AutoMLRegressor
model = AutoMLRegressor()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
DataPrepare:
from automl_alex import DataPrepare
de = DataPrepare()
X_train = de.fit_transform(X_train)
X_test = de.transform(X_test)
Simple Models Wrapper:
from automl_alex import LightGBMClassifier
model = LightGBMClassifier()
model.fit(X_train, y_train)
predicts = model.predict_proba(X_test)
model.opt(X_train, y_train,
timeout=600, # optimization time in seconds,
)
predicts = model.predict_proba(X_test)
More examples in the folder ./examples:
It integrates many popular frameworks:
Categorical Features
Numerical Features
Binary Features
Text
Datetime
Timeseries
Image
Works with optuna-dashboard
Run
$ optuna-dashboard sqlite:///db.sqlite3
Feature Generation
Save/Load and Predict on New Samples
Advanced Logging
Add opt Pruners
Docs Site
DL Encoders
Add More libs (NNs)
Multiclass Classification
Build pipelines
Version | Tag | Published |
---|---|---|
1.6.10 | 2yrs ago | |
1.3.10 | 2yrs ago | |
1.3.9 | 2yrs ago | |
1.3.8 | 2yrs ago |