Showing:

0

1

6yrs ago

1

1

MIT

No

# narcissitic-number

Quoting wikipedia

An n-digit number that is the sum of the nth powers of its digits is called an n-narcissistic number. It is also sometimes known as an Armstrong number, perfect digital invariant (Madachy 1979), or plus perfect number. Hardy (1993) wrote, "There are just four numbers, after unity, which are the sums of the cubes of their digits: 153=1^3+5^3+3^3, 370=3^3+7^3+0^3, 371=3^3+7^3+1^3, and 407=4^3+0^3+7^3. These are odd facts, very suitable for puzzle columns and likely to amuse amateurs, but there is nothing in them which appeals to the mathematician." Narcissistic numbers therefore generalize these "unappealing" numbers to other powers (Madachy 1979, p. 164). Wolfram

``````npm i narcissistic-numbers
``````

# usage

``````const isNarcissisticNumber = require('./isNarcissisticNumber');
const number = 153;
const {
is, explanation
} = isNarcissisticNumber(number);

console.log(`\${number} \${is ? 'is' : 'is not'} a narcissistic number because "\${explanation}"`);
// 153 is a narcissistic number because "153 = 1^3 5^3 3^3"
``````

# demo

``````\$ node run
Listing Narcissistic numbers...
0 = 0^1
1 = 1^1
2 = 2^1
3 = 3^1
4 = 4^1
5 = 5^1
6 = 6^1
7 = 7^1
8 = 8^1
9 = 9^1
153 = 1^3 5^3 3^3
370 = 3^3 7^3 0^3
371 = 3^3 7^3 1^3
407 = 4^3 0^3 7^3
1634 = 1^4 6^4 3^4 4^4
8208 = 8^4 2^4 0^4 8^4
9474 = 9^4 4^4 7^4 4^4
54748 = 5^5 4^5 7^5 4^5 8^5
92727 = 9^5 2^5 7^5 2^5 7^5
93084 = 9^5 3^5 0^5 8^5 4^5
548834 = 5^6 4^6 8^6 8^6 3^6 4^6
1741725 = 1^7 7^7 4^7 1^7 7^7 2^7 5^7
4210818 = 4^7 2^7 1^7 0^7 8^7 1^7 8^7
9800817 = 9^7 8^7 0^7 0^7 8^7 1^7 7^7
9926315 = 9^7 9^7 2^7 6^7 3^7 1^7 5^7
24678050 = 2^8 4^8 6^8 7^8 8^8 0^8 5^8 0^8
24678051 = 2^8 4^8 6^8 7^8 8^8 0^8 5^8 1^8
[...]
``````

## Rate & Review

Great Documentation0
Easy to Use0
Performant0
Highly Customizable0
Bleeding Edge0
Responsive Maintainers0
Poor Documentation0
Hard to Use0
Slow0
Buggy0
Abandoned0
Unwelcoming Community0
100  No reviews found
Be the first to rate

## Alternatives  No alternatives found

## Tutorials  No tutorials found